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Abstract: We employ the generalized bracket formalism of nonequilibrium thermodynamics by Beris and

Edwards to derive Lorentz-covariant time-evolution equations for an imperfect fluid with viscosity, dilatational

viscosity, and thermal conductivity. Following closely the analysis presented by Öttinger (Physica A, 259, 1998,

24–42; Physica A, 254, 1998, 433–450) to the same problem but for the GENERIC formalism, we include in the

set of hydrodynamic variables a covariant vector playing the role of a generalized thermal force and a covari-

ant tensor closely related to the velocity gradient tensor. In our work here, we derive first the nonrelativistic

equations and then we proceed to obtain the relativistic ones by elevating the thermal variable to a four-vector,

the mechanical force variable to a four-by-four tensor, and by representing the Hamiltonian of the system with

the time component of the energy-momentum tensor. For the Poisson and dissipation brackets we assume the

same general structure as in the nonrelativistic case, but with the phenomenological coefficients in the dissipa-

tion bracket describing friction to heat and viscous effects being properly constrained for the resulting dynamic

equations to be manifest Lorentz-covariant. The final relativistic equations are identical to those derived by

Öttinger but the present approach seems to be more general in the sense that one could think of alternative

forms of the phenomenological coefficients describing friction that could ensure Lorentz-covariance.

Keywords: nonequilibrium thermodynamics; single-generator bracket; GENERIC; relativistic hydrodynamics;

imperfect fluid; thermal conductivity

1 Introduction

The generalized bracket formalism of nonequilibrium thermodynamics introduced by Grmela [1–3] and Beris

and Edwards [4, 5] attracted considerable attention in the last decades, since it provides a systematic and solid

framework for formulating time-evolution equations for fluids with a complex internal microstructure that are

consistent with the fundamental laws of thermodynamics. Coupled, in particular, with a microscopic model

describing physics at a lower level, it has been used with remarkable success to address a variety of problems

in Soft Matter. We mention, for example, the flow of polymers past a wall [6, 7], the rheology of wormlike micel-

lar solutions [8], the formulation of constitutive equations describing the phase behavior, microstructure, and

rheology of unentangled polymer nanocomposite melts [9], the rheology of agglomerating blood [10] and of

aggregating particle suspensions [11], and the description of heat and mass transfer in multicomponent sys-

tems [12]. The formalism is based on the idea that one can use an appropriate “thermodynamic potential”
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so that the fundamental properties of equilibrium thermodynamics and classical mechanics can be carried

over to dynamic, nonequilibrium systems. This fundamental potential is an extended form of the energy of the

system, defined as a functional in terms of a small set of independent (hydrodynamic and structural or internal)

variables that are assumed to uniquely determine its macroscopic state.

Historically, the development of theHamiltonian formalism for dissipative systems startedwith the pioneer-

ing works of Kaufman [13], Morrison [14, 15] and Abarbanel et al. [16], and culminated to what is known today

as the single-generator bracket formalism of nonequilibrium thermodynamics [17], since the Hamiltonian is the

only thermodynamic potential appearing in the master equation of change used to derive the time-evolution

equations for the independent variables. In a subsequent study, Grmela and Öttinger proposed using two sepa-

rate generators of the dynamics [18, 19], the energy and entropy, and this gave rise to the so called GENERIC (=
General Equation for the NonEquilibrium Reversible-Irreversible Coupling) or double-generator formalism of

nonequilibrium thermodynamics [20].

As already mentioned, the generalized bracket formalism has been widely used to describe transport phe-

nomena in a variety of complex fluids. Naturally, the question arises if it can also be used to describe relativistic

fluids which are of paramount importance in astrophysics and cosmology (e.g., in the description of gravita-

tional collapse leading to the formation of neutron stars). For GENERIC, this issue was addressed by Öttinger

already since 1998 who showed that the double-generator formalism is fully compatible with the laws of spe-

cial relativity [21, 22]. Öttinger also discussed how the relativistic equations derived by GENERIC compare with

previous theories and reported that the classical theory of Eckart [23], the second-order theory of Israel [24],

and the equations of extended irreversible thermodynamics [25] and of kinetic theory [26] do not possess the

full nonequilibrium structure characterizing the equations derived from GENERIC, despite that both Israel’s

theory and extended irreversible thermodynamics are very similar in structure, while kinetic theory can pro-

vide the linearized form of the equations. It makes sense therefore to ask the same question for the generalized

bracket formalism, and this is exactly the question that we address in this article. Given, in fact, that on the

hydrodynamic level, the one- and two-generator frameworks have been shown by Edwards and collaborators

to be equivalent [27, 28], the answer to this question is expected to be positive. Our work here will demonstrate

that, indeed, the generalized bracket formalism is compatible with special relativity, since with the appro-

priate choice of the independent variables, of the Hamiltonian, of the Poisson and dissipation brackets, and

by appropriately restricting the form of dissipative rates, one can derive a set of manifest Lorentz-covariant

equations.

The rest of the paper is structured as follows: In Section 2 we derive first the equations for a nonrela-

tivistic imperfect fluid with heat flow but without viscosity, by defining all building blocks (vector of state

variables, Hamiltonian, Poisson bracket, dissipation bracket). Then, in the same Section, we extend the anal-

ysis to the case of a relativistic fluid. In Section 3 we examine a fluid with viscosity and dilatational viscosity,

and we derive the corresponding nonrelativistic and relativistic equations. In Section 4 we elaborate on the sig-

nificance of the work and in Section 5 we summarize the most important findings and discuss possible future

directions.

2 An inviscid fluid

2.1 Nonrelativistic description

In the context of the generalized bracket formalism of nonequilibrium thermodynamics, dynamic equations are

derived by invoking the following general time-evolution equation for an arbitrary functional F [17]:

dF

dt
= {F,H} + [F,H] (1)

where t denotes the time, H the Hamiltonian of the system expressed in terms of the vector of acceptable state

variables, {…} the Poisson bracket describing conservative (convective) effects to the dynamics, and […] the
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dissipative bracket accounting for non-conservative phenomena. Coupled time-evolution equations for the rele-

vant dynamical variables are then obtained through a direct comparison of themaster equation, Eq. (1), with the

expression that results by differentiating
dF

dt
by parts and using the functional dependence of the Hamiltonian

on the vector of state variables.

The two brackets appearing in Eq. (1) must satisfy certain relationships in order for the master equation to

be compatiblewith fundamental physical laws and also have the correctmathematical structure required for an

evolution equation. In particular, the Poisson bracketmust be bilinear and satisfy the 1st law of thermodynamics

for a conservative system; thus, it has to be antisymmetric, {F,G} = −{G, F}, in order to ensure that the total
energy of the system is conserved,

dH

dt
= {H,H} = 0. It must also satisfy the requirement of zero rate of entropy

production for a conservative system, namely {S,H} = 0, and obey time-structure invariance, i.e., to satisfy the

Jacobi identity [29].

The dissipative bracket, on the other hand, must be a linear function of F, must be frame indifferent, and

must satisfy the 1st law of thermodynamics, i.e.,
dH

dt
= 0, which translates into [H,H] = 0. It must also satisfy

the 2nd law of thermodynamics, i.e., the requirement of a non-negative rate of entropy production,
dS

dt
≥ 0,

which translates into [S,H] ≥ 0. Moreover, close to equilibrium, the dissipation bracket must have a symmetric

structure indicative of the Onsager–Casimir reciprocal relationships [30–32] between the transport coefficients

relating fluxes to affinities (the derivatives or the gradient of the Hamiltonian with respect to the dynamical

variables). A nice feature of the generalized bracket formalism is that the appropriate expressions for the fluxes

arise automatically from the formulation (they come out to depend only on the dissipation bracket) and should

not be specified explicitly.

2.1.1 The vector of state variables

The starting point within the bracket formalism is the definition of the set x of acceptable state variables needed

to specify the thermodynamic-hydrodynamic state of the system. This typically contains field densities, includ-

ing, at a minimum, those needed to specify the system at equilibrium. For example, for a structureless fluid, the

set x contains themass density of the fluid 𝜌, the entropy density s, and themomentumdensityM; thus, wewrite

x = {𝜌,M, s}. The next step is to specify the Hamiltonian H, physically identified with an (extended) energy of
the system, as a functional (integral over the system volume) of the state variables.

Given the striking similarity of the single-generator formalism with the double-generator formalism, to

check the consistency of the generalized bracket formalism with special relativity it makes sense to follow in

the present work the path already undertaken by Öttinger in his analysis of the compatibility of the GENERIC

formalismwith special relativity [21, 22]. Thus, we take the vector x to be an expanded set of variables consisting

of the usual set {𝜌,M, s} plus additional vector and/or tensor variables which are covariant and of intensive

nature. More specifically, to describe heat flow we introduce a vector w playing the role of a generalized force

whose dynamics leads to a heat flux. We will find that the vectorw is closely related to the space gradient of the

temperature of the fluid, and since the derivative with respect to a contravariant vector is of covariant nature,

wwill be assumed to be of covariant nature. Similar, to describe viscous effects in Section 3, we will introduce a

symmetric, covariant tensor c playing the role of a generalized mechanical force closely related to the velocity

gradient tensor. Overall, for the case of an imperfect fluid without viscosity but with heat flow considered in this

Section, the vector of state variables reads x = {𝜌(r, t),M(r, t), s(r, t),w(r, t)}.

2.1.2 Hamiltonian, Poisson bracket, and the reversible part of transport equations

Given the covariance nature of w, the Poisson bracket for the set x = {𝜌,M, s,w} has the following form

[17, 20]:
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{F,G} = −
∫

[
𝛿F

𝛿𝜌
∇ j

(
𝛿G

𝛿Mj

𝜌

)
− 𝛿G

𝛿𝜌
∇ j

(
𝛿F

𝛿Mj

𝜌

)]
dV

−
∫

[
𝛿F

𝛿Mk

∇ j

(
𝛿G

𝛿Mj

Mk

)
− 𝛿G

𝛿Mk

∇ j

(
𝛿F

𝛿Mj

Mk

)]
dV

−
∫

[
𝛿F

𝛿s
∇ j

(
𝛿G

𝛿Mj

s

)
− 𝛿G

𝛿s
∇ j

(
𝛿F

𝛿Mj

s

)]
dV

−
∫

[
𝛿F

𝛿𝑤k

∇k

(
𝛿G

𝛿Mj

)
𝑤 j −

𝛿G

𝛿𝑤k

∇k

(
𝛿F

𝛿Mj

)
𝑤 j

]
dV

−
∫

[
𝛿F

𝛿𝑤k

(
∇ j𝑤k

) 𝛿G

𝛿Mj

− 𝛿G

𝛿𝑤k

(
∇ j𝑤k

) 𝛿F

𝛿Mj

]
dV

−
∫

[
𝛿F

𝛿s
∇ j

(
𝛿G

𝛿𝑤 j

)
− 𝛿G

𝛿s
∇ j

(
𝛿F

𝛿𝑤 j

)]
dV (2)

where the last 3 terms have been chosen so as to give rise to a frame invariant, objective time derivative for the

(covariant) vector w. Please note that in the above equations and in the following, Einstein’s notation implying

summation over repeated indices has been tacitly adopted. Also, as it is customary in the field,with Greek indices

we will be denoting the four time-space components while with Latin ones we will be denoting only the space

components. The above bracket is bilinear, antisymmetric and satisfies the Jacobi identity. In particular, the proof

of the Jacobi identity for the terms involving the vector w has been worked out by Öttinger [20].

For the Hamiltonian H we assume the following form:

H(𝜌,M, s,w) =
∫

(
ekin + u

)
dV

=
∫

[ |M(r, t)|2
2𝜌(r, t)

+ u
(
𝜌(r, t), s(r, t),w2(r, t)

)]
dV , (3)

where ekin denotes the kinetic energy density of the fluid and u the internal energy density. For uwe assume the

following functional dependence:

u = u
(
𝜌, s,w2

)
, (4)

which can be regarded as a generalized local thermodynamic relationship. In Eq. (3), we have neglected con-

tributions due to external fields. Then, in the course of the derivation of the equations of motion for the fluid,

we need the functional derivatives of the Hamiltonian H with respect to the components of the vector x of

independent variables. Based on Eq. (3), these are:

𝛿H

𝛿M
= M

𝜌
= v (5a)

𝛿H

𝛿𝜌
= −M

2

2𝜌2
+ 𝜕u

𝜕𝜌
(5b)

𝛿H

𝛿s
= 𝜕u

𝜕s
= T (5c)

𝛿H

𝛿w
= j = 𝜎w (5d)

where we have defined

𝜎 ≡ 2
𝜕u

𝜕w2
. (6)

Please note that in the above derivatives, 𝜌,M and s are densities of extensive variables butw2 is by nature

an intensive variable.

The dynamic equations of motion are derived by writing the dynamical equation for any functional

F[𝜌,M, s,w] = ∫ f (𝜌,M, s,w)dV in the form
dF

dt
= ∫

[
𝛿F

𝛿𝜌

𝜕𝜌

𝜕t
+ 𝛿F

𝛿Mi

𝜕Mi

𝜕t
+ 𝛿F

𝛿s

𝜕s

𝜕t
+ 𝛿F

𝛿𝑤i

𝜕𝑤i

𝜕t

]
dV and comparing terms
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one-by-one with the general evolution equation, Eq. (1), for the Poisson bracket defined above. By doing so,

making use of Eqs. (5a)–(5d), defining the thermodynamic pressure p through

p = 𝜌
𝜕u

𝜕𝜌

||||s,w2

+ s
𝜕u

𝜕s

||||𝜌,w2

− u
(
𝜌, s,w2

)
, (7)

and combining terms in the momentum equation in an appropriate way, the following set of dynamic equations

is derived for such an inviscid fluid:
𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (8a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (8b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
, (8c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r
T. (8d)

In these equations,
(
𝜅T

)
i j
= ∇i𝑣 j denotes the ij-element of the transpose velocity gradient tensor while P

is the stress tensor defined as

P = p1+ jw, (9)

with 1 denoting the unit tensor of rank 2. Because of Eq. (5d), the tensor P is symmetric. Equation (8a) is the

conservation equation for the mass (the continuity equation), Eq. (8b) is the conservation equation for the

momentum (themomentumbalance equation), Eq. (8c) is the conservation equation for the entropy, andEq. (8d)

is the time-evolution equation for the thermal vector (the thermal vector equation). Equations (8) are identical

to those reported in [21].

2.1.3 Dissipative bracket and the full form of the transport equations

For a system described by the set x = {𝜌(r, t),M(r, t), s(r, t),w(r, t)} of hydrodynamic variables, the simplest
possible bilinear form for the dissipative bracket is [17]

[F,G] = −
∫

Qijkl∇i

(
𝛿F

𝛿Mj

)
∇k

(
𝛿G

𝛿Ml

)
dV +

∫

1

T

𝛿F

𝛿s
Qijkl∇i

(
𝛿G

𝛿Mj

)
∇k

(
𝛿G

𝛿Ml

)
dV

−
∫

Ai j∇i

(
𝛿F

𝛿s

)
∇ j

(
𝛿G

𝛿s

)
dV +

∫

1

T

𝛿F

𝛿s
Ai j∇i

(
𝛿G

𝛿s

)
∇ j

(
𝛿G

𝛿s

)
dV

−
∫

Ri j
𝛿F

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV +
∫

1

T

𝛿F

𝛿s
Ri j

𝛿G

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV , (10)

where the various phenomenological coefficients should satisfy the following constraints due to the

Onsager–Casimir reciprocity principles [17, 30–32]:

Qijkl = Qklij, ∀i, j, k, l (11a)

Ai j = Aji, ∀i, j (11b)

Ri j = Rji, ∀i, j. (11c)
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Then, the resulting set of transport equations reads

𝜕𝜌

𝜕t
= −∇ j

(
𝑣 j𝜌

)
, (12a)

𝜕Mi

𝜕t
= −∇ j

(
𝑣 jMi

)
−∇ jP ji +∇ j

(
Qjikl∇k

𝛿H

𝛿Ml

)
, (12b)

𝜕s

𝜕t
= −∇ j

(
𝑣 js+ j j

)
+ 1

T
Qijkl∇i

(
𝛿H

𝛿Mj

)
∇k

(
𝛿H

𝛿Ml

)
+ 1

T
Ai j∇i

(
𝛿H

𝛿s

)
∇ j

(
𝛿H

𝛿s

)

+∇i

(
Ai j∇ j

(
𝛿H

𝛿s

))
+ 1

T
Ri j

𝛿H

𝛿𝑤i

𝛿H

𝛿𝑤 j

, (12c)

𝜕𝑤i

𝜕t
= −𝑣 j

(
∇ j𝑤i

)
−
(
∇i𝑣 j

)
𝑤 j −∇iT − Ri j

𝛿H

𝛿𝑤 j

. (12d)

For an isotropic fluid, the three phenomenological coefficients should have the following form [17]:

Ai j = A00𝛿i j, ∀i, j

Qijkl = 𝜇
(
𝛿ik𝛿 jl + 𝛿il𝛿 jk

)
+ 𝜅′𝛿i j𝛿kl, ∀i, j, k, l

Ri j = R00𝛿i j, ∀i, j, (13)

with 𝜇 and 𝜅′ having units of viscosity. Related to them is the bulk viscosity defined as 𝜅 = 𝜅′ + 2

3
𝜇. The above

expressions result in the following set of time-evolution equations:

𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (14a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P+ 𝜕

𝜕r
⋅ 𝛔, (14b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ 1

T
𝛔:𝛋T + A00

T

𝜕

𝜕r
T ⋅

𝜕

𝜕r
T + 𝜕

𝜕r
⋅
(
A00

𝜕

𝜕r
T

)
+ 1

T
R00 j

2, (14c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r
T − R00 j, (14d)

where 𝛔 is the extra stress tensor given by

𝛔 = 𝜇
(
𝛋T + 𝛋

)
+ 𝜅′

(
𝜕

𝜕r
⋅ v

)
1. (15)

In the next Section, wewill focus on the relativistic casewhere no terms proportional toQ andA are allowed

[21]. In this case, the transport equations reduce to

𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (16a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (16b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ 1

T
R00 j

2, (16c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r
T − R00 j. (16d)

From Eq. (16c), in particular, we can identify the thermal conductivity as 𝜆 = 1

T
R00.
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2.2 Relativistic formulation

2.2.1 Definitions of fluid properties and some important thermodynamic considerations

Due to the increased density of the fluid from the contraction of length in the direction of flow, for the rest mass

density we take

𝜌 = 𝛾 𝜌 f , (17)

where

𝛾 = 1√
1− 𝑣2

c2

(18)

is the Lorentz factor, with c being the speed of light. In Eq. (17) but also everywhere in the following analysis, the

subscript “f ” will be used to denote properties of the fluid evaluated in its local (comoving) frame of reference.

The next step is to introduce the Minkowski tensor for raising and lowering indices:

𝜂 =

⎛⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
(19)

and define the fluid velocity. Despite that there are various possibilities of defining the local fluid velocity, fol-

lowing Öttinger [21, 22] wewill prefer Eckart’s definition [23] according towhich, in the corresponding reference

frame of the fluid, the time-like Lorentz vector u𝜇 of the fluid velocity becomes u0
f
= 1 and ui

f
= 0 (i = 1, 2, 3).

In the fixed Cartesian frame, we work with the dimensionless velocity four-vector u𝜇 defined in terms of the

components vi of the velocity vector v through

u0 = 𝛾, ui = 𝛾
𝑣i
c

(20)

so that u𝜇u
𝜇 = −1. We also introduce the four-vector of partial derivatives 𝜕𝜇 = 𝜕

𝜕x𝜇
(𝜇 = 0, 1, 2, 3) where

x0 = −x0 = ct is the time coordinate and xi = xi (i = 1, 2, 3) are the three space coordinates (the Cartesian

components of the position vector r).

Of key importance for the rest of the analysis is the definition of the energy-momentum tensor. To this, and

following [21], we assume that this tensor has the following general form:

T𝜇𝜈 =
(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
u𝜇u𝜈 + P𝜇𝜈, (21)

where, inspired from Eq. (9) of the nonrelativistic case, the stress tensor is taken to be:

P𝜇𝜈 = p f 𝜂
𝜇𝜈 + 𝜎 f𝑤

𝜇𝑤𝜈 . (22)

This implies thatwehave elevated the 3-d vectorw to a four-vector𝑤𝜇 parameterized by its time component

𝑤0 and its three Cartesian components𝑤i. The time component𝑤
0 of the vectorwwill be defined a little later by

postulating a generalized (thermodynamic-hydrodynamic) Euler equation for the relativistic fluid. In Eq. (21),

uf is the internal energy of the fluid in the comoving frame of reference, for which we assume the following

functional dependence:

u f = u f

(
𝜌 f , s f ,w f

2
)
, (23)

with sf denoting the entropy density of the fluid (in the comoving frame of reference). Similar, pf is the thermo-

dynamic pressure of the fluid in the comoving frame of reference. Howwf is related tow is discussed byÖttinger
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[21]. In analogy with the nonrelativistic case, we also introduce the following (relativistic) fluid properties in the

comoving frame:

𝜇 f =
𝜕u f

𝜕𝜌 f

, (24a)

T f =
𝜕u f

𝜕s f
, (24b)

𝜎 f = 2
𝜕u f

𝜕w f
2
, (24c)

and we further assume the following thermodynamic Euler equation:

u f = T f s f − p f + 𝜇 f𝜌 f . (25)

From Eqs. (21) and (22), the expression for the energy-momentum tensor becomes

T𝜇𝜈 =
(
𝜌 f c

2 + u f + p f + 𝜎 f

(
u𝛼𝑤

𝛼
)2)

u𝜇u𝜈 + P𝜇𝜈 . (26)

From Eq. (21) for T𝜇𝜈 , we also identify the momentum vector components (Mi ≡
1

c
T0i) as

Mi =
(
T00 − P00

)𝑣i
c2

+ 1

c
P0i, (27)

or, equivalently,

M =
(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
𝛾2

v

c2
+ 𝜎 f𝑤

0w

c
. (28)

By noticing that

T00 =
(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
𝛾2 − p f + 𝜎 f𝑤

0𝑤0, (29)

the momentum vector can also be written as

M =
(
T00 + p f − 𝜎 f𝑤

2
0

) v
c2

− 𝜎 f𝑤0
w

c
. (30)

Since 𝜌 f c
2 is the contribution of the mass to the energy, the rest of the terms in Eq. (29) should represent the

total internal energy density of the fluid (the sum of internal and kinetic energy densities).

To develop suitable transport equations for the relativistic fluid, we take the vector of state variables to be

again x = {𝜌,M, s,w} as for the nonrelativistic one. Then, from the energy-momentum tensor, the Hamiltonian

(total energy) of the relativistic fluid is

H(x) =
∫

T00d3r; (31)

thus, the functional derivatives
𝛿H

𝛿x
that are needed in the construction of the Poisson and dissipative brackets

can be calculated through
𝛿H

𝛿x
= 𝜕T00

𝜕x
. (32)

For the vector x = {𝜌,M, s,w} defined above, these derivatives have been obtained by Öttinger in [21] and
read

𝛿H

𝛿𝜌
=

c2 + 𝜇 f

𝛾
, (33a)

𝛿H

𝛿M
= v, (33b)

𝛿H

𝛿s
=

T f

𝛾
, (33c)

𝛿H

𝛿w
= j, (33d)
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where now the heat flux vector is given not by Eq. (5d) but by

j = 𝜎 fw+ 𝜎 f𝑤0
v

c
. (34)

With the help of Eq. (33), we can also fix now the time-like component of the four-vector𝑤𝜇 as well as the

fluid entropy in the comoving frame. To this, we demand the following generalized (relativistic hydrodynamic-

thermodynamic) Euler equation at the level of the total energy of the relativistic fluid:

𝜌
𝛿H

𝛿𝜌
+M ⋅

𝛿H

𝛿M
+ s

𝛿H

𝛿s
= p f + T00. (35)

In Appendix A we examine under what conditions such an equation applies and we find that Eq. (35) is

identically satisfied if: (a) we chose w0 to be such that

𝑤𝜇u
𝜇 = −

T f

c
(36)

and (b) take the entropy density to be

s = 𝛾s f +
𝜎 f

c

(
𝑤0 −

T f

c
𝛾

)
. (37)

These were the missing building blocks before applying the generalized bracket formalism to derive the

relativistic hydrodynamic equations for a relativistic fluid described by the set x = {𝜌,M, s,w}. In fact, Eq. (37)
suggests the following expression for the four-vector entropy of the relativistic fluid:

S𝜇 = s f u
𝜇 + J𝜇

c
, (38)

with

J𝜇 = 𝜎 f

(
𝑤𝜇 −

T f

c
u𝜇

)
. (39)

This is a beautiful result, since it also indicates how the flux j is elevated from a 3-d vector to a four-vector.

Indeed, from Eq. (34) we find that

j = 𝜎 f

(
1− v v

c2

)
⋅
(
w− 𝛾T f

v

c2

)
, (40a)

implying

j = J− J0

c
v, (40b)

which is fully compatible with Eq. (39).

Öttinger [21] has indicated several useful equations satisfied by the four-vectors 𝑤𝜇 , u𝜇 , J𝜇 and S𝜇 . In

particular, for the following analysis, we note that u𝜇 J
𝜇 = 0. With the help of Eq. (36), we also note that

T00 =
(
𝜌 f c

2 + u f + p f + 𝜎 f

T2
f

c2

)
𝛾2 − p f + 𝜎 f𝑤

2
0
. (41)

Moreover, from Eq. (33c) we understand that T = T f

𝛾
, implying that T f > T .

2.2.2 Poisson bracket and the corresponding reversible part of the transport equations

Weare now in a position towrite down the dynamic equations in the comoving frame. To this, we assume exactly

the same form of the Poisson bracket as before, Eq. (2), and we make again use of the following generalized

thermodynamic identity (a direct result of the generalized Euler equation expressed by Eq. (35) and the fact that

the total energy density is T00):

𝜌∇i
𝛿H

𝛿𝜌
+Mj∇i

𝛿H

𝛿Mj

+ s∇i
𝛿H

𝛿s
= ∇i p f + j j∇i𝑤 j. (42)
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Then, the reversible part of the dynamic equations comes out to be

𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (43a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (43b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
, (43c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
, (43d)

where P is the stress tensor defined as

P = p f 1+ j w. (44)

Interestingly enough, and despite the totally different expressions of j in the relativistic and nonrelativistic

cases, the corresponding equation between P and j remains the same.

The explicit Lorentz-covariant form of the above transport equations is

𝜕𝜇
(
𝜌 f u

𝜇
)
= 0, (45a)

𝜕𝜇
[(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
u𝜇u𝜈 + P𝜇𝜈

]
= 0, (45b)

𝜕𝜇

(
s f u

𝜇 + J𝜇

c

)
= 0, (45c)

u𝜇
(
𝜕𝜈𝑤𝜇 − 𝜕𝜇𝑤𝜈

)
= 0. (45d)

2.2.3 Dissipative bracket and full form of transport equations

To complete the above set of equations, we need to add the dissipative contributions. Given that we make use

of the same set of structural variables as in the nonrelativistic case, we start by using the same general form of

the dissipative bracket as in the nonrelativistic case, Eq. (13), without the terms proportional to tensors Q and

A, and with the understanding that, due to the Onsager–Casimir reciprocity principles, the tensor R should be

again symmetric, see Eq. (11c):

[F,G] = −
∫

A1𝑤i
𝛿F

𝛿𝑤i

𝛿G

𝛿s
dV +

∫

1

T

𝛿F

𝛿s
A1𝑤i

𝛿G

𝛿𝑤i

𝛿G

𝛿s
dV

−
∫

Ri j
𝛿F

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV +
∫

1

T

𝛿F

𝛿s
Ri j

𝛿G

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV. (46)

However, in the relativistic case, the tensorR should not have to be isotropic. In fact,R has to be defined such

that the resulting equations aremanifest Lorentz-covariant, which places considerable constraints on its admis-

sible forms.With Eq. (46) for the dissipation bracket, the resulting set of transport equations for the entropy and

thermal vector (the balance equations for the mass and momentum densities remain the same) read:

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ A1w ⋅ j+ 1

T
R ⋅ j ⋅ j, (47a)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
− A1Tw− R ⋅ j. (47b)

The final step is to determine a particular form of the matrix R for which a covariant set of transport

equations arises. One way to achieve this is to note that from the second equality in Eq. (40), the vector j can

be expressed as

j = F ⋅ J, (48)
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where

F = 1− v v

c2
, (49)

and J is given from Eq. (39). Then, we can require that the matrix R satisfies: R𝛼𝛽F𝛼𝛾 ≡ A2 ⋅ 𝛿𝛽𝛾 , where A2 a rate
constant. That is, we assume that the matrix R is proportional to the inverse of the matrix F:

R ≡ A2 ⋅ F
−1. (50)

Then, one can show that

R = A2

(
1+ 𝛾2

v v

c2

)
, (51)

which is exactly the corresponding entry in the friction matrix proposed by Öttinger in Ref. [21]. According to

Eq. (51), the friction matrix R depends on the velocity field, thus it is inherently anisotropic which significantly

differentiates it from the nonrelativistic case. Then, the governing equations for the entropy and thermal vector

become
𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ A1w ⋅ j+ A2

T
J ⋅ j, (52a)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
− A1Tw− A2J. (52b)

The next step is to check if these can be cast in a Lorentz-covariant form. For the 2nd entropy production

term on the right-hand side of Eq. (52a), we notice that

J ⋅ j = J𝜇 J
𝜇, (53)

which is manifest Lorentz-covariant. For the 1st entropy production term, on the other hand, we find

𝑤i ji = 𝑤𝜇 J
𝜇 − 1

c

T f

𝛾
J0, (54)

which is clearly noncovariant. Thus, we must take A1 = 0. Consequently, the final covariant form of the four

dynamic equations [Eq. (43a) for the density, Eq. (43b) for the energy-momentum tensor, Eq. (52a) for the entropy

density, and Eq. (52b) for the thermal vector] reads:

𝜕𝜇
(
𝜌 f u

𝜇
)
= 0, (55a)

𝜕𝜇
[(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
u𝜇u𝜈 + P𝜇𝜈

]
= 0, (55b)

𝜕𝜇

(
s f u

𝜇 + J𝜇

c

)
= A2

T
J𝜇 J

𝜇, (55c)

u𝜇
(
𝜕𝜈𝑤𝜇 − 𝜕𝜈𝑤𝜇

)
= −A2

(
𝑤𝜈 −

T f

c
u𝜈

)[
= A2

(
𝜂𝜈𝜆 + u𝜈u𝜆

)
𝑤𝜆

]
. (55d)

The set of relativistic equations, Eq. (55), is identical to that derived byÖttinger fromGENERIC [21]; however,

we have to keep in mind that they have been obtained by choosing the phenomenological friction matrix R to

satisfy Eq. (50). Thus, in principle, one could think of other choices of R that could render the time-evolution

equations for the entropy and the thermal vector covariant, and this is something worth pursuing further in the

future. For the rest of the analysis, we also note the following equations (see also [21]):

𝑤𝜇 J
𝜇 = 𝜎 fw

2
f
, (56)

J𝜇 J
𝜇 = 𝜎 f𝑤𝜇 J

𝜇 = 𝜎2
f
w
2
f
, (57)

w f =
(
1− 𝛾

𝛾 + 1

v v

c2

)
⋅
(
w− 𝛾T f

v

c2

)
. (58)



12 — V. G. Mavrantzas: Relativistic hydrodynamics

3 A viscous fluid

Having succeeded in deriving a set of relativistic equations for an imperfect fluid with heat flow that possess

the full structure of the single-generator bracket formalism, the next step is to consider the case of an imperfect

fluidwith viscosity anddilatational viscosity. Again,we start by introducing the proper set of variables. Following

Öttinger [22], we now add in the vector of state variables a tensor variable c which, as will see in the course of

the analysis, is intimately connected with the velocity gradient tensor and thus with the momentum flux. As in

Section 2, we will consider first the nonrelativistic case and then we will proceed to the relativistic description.

Considering the nonrelativistic case first will be helpful in several respects: (a) it will lead to equations that

can reproduce hydrodynamics with the correct dissipation terms, (b) it will allow us to guess the proper form

of the stress tensor to include in the relativistic description, and (c) it will provide information concerning the

most essential couplings between momentum flow and heat flow. Moreover, the analysis will help us define

fluid properties which will be identified next with the fundamental transport properties of the fluid (thermal

conductivity, viscosity, and dilatational viscosity), which of course need to be non-negative.

3.1 Nonrelativistic formulation

3.1.1 The vector of state variables

We take the vector of state variables to be x = {𝜌,M, s,w, c}where c is a symmetric covariant tensor. However,
and as will become more apparent in the following sections, when we will elevate this tensor to a covariant

tensor c𝜇𝜈 , eventually wewill have towork not with the tensor c but with the tensor c− 1. Thus, in the following,

the new structural variable will be (not the covariant tensor c but) the covariant tensor c− 1.

3.1.2 Hamiltonian, Poisson bracket, and the reversible part of transport equations

Given the covariant nature of c− 1, the Poisson bracket for the setx just defined in Section 3.1.1 has the following

form:

{F,G} = {F,G}inv − ∫

[
𝛿F

𝛿ci j
∇k

(
ci j
) 𝛿G

𝛿Mk

− 𝛿G

𝛿ci j
∇k

(
ci j
) 𝛿F

𝛿Mk

]
dV

+
∫

(
cik − 𝛿ik

)[ 𝛿G
𝛿ci j

∇ j

(
𝛿F

𝛿Mk

)
− 𝛿F

𝛿ci j
∇ j

(
𝛿G

𝛿Mk

)]
dV

+
∫

(
ck j − 𝛿k j

)[ 𝛿G
𝛿ci j

∇i

(
𝛿F

𝛿Mk

)
− 𝛿F

𝛿ci j
∇i

(
𝛿G

𝛿Mk

)]
dV , (59)

where {F,G}inv corresponds to the inviscid case and is given by Eq. (2). The above bracket is bilinear, antisym-
metric and satisfies the Jacobi identity. The corresponding expression for the Hamiltonian H reads

H(𝜌,M, s,w, c) =
∫

(
ekin + u

)
dV

=
∫

[ |M(r, t)|2
2𝜌(r, t)

+ u(𝜌(r, t), s(r, t),w(r, t), c(r, t))

]
dV , (60)

with the dependence of the internal energy u on the vector w and tensor c coming through the following

invariant (scalar) quantities:

I1 = tr(c), I2 = tr
(
c
2
)
, I3 = tr

(
c
3
)
, I4 = w

2, I5 = w ⋅ c ⋅w, I6 = w ⋅ c2 ⋅w. (61)
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Thus, for the internal energy u we assume a general thermodynamic relationship of the form:

u = u
(
𝜌, s, I1, I2, I3, I4, I5, I6

)
, (62)

from which the following fluid properties are defined:

𝜇 = 𝜕u

𝜕𝜌
, (63a)

T = 𝜕u

𝜕s
, (63b)

𝜎1 = 2
𝜕u

𝜕I1
, (63c)

𝜎2 = 4
𝜕u

𝜕I2
, (63d)

𝜎3 = 6
𝜕u

𝜕I3
, (63e)

𝜎4 = 4
𝜕u

𝜕I4
, (63f)

𝜎5 = 2
𝜕u

𝜕I5
, (63g)

𝜎6 = 2
𝜕u

𝜕I6
. (63h)

Based on these, the functional derivatives of the Hamiltonian with respect to the independent variables

x = {𝜌,M, s,w, c} that are needed in the course of the derivation of the equations of motion turn out to be

𝛿H

𝛿M
= M

𝜌
= v, (64a)

𝛿H

𝛿𝜌
= −M

2

2𝜌2
+ 𝜕u

𝜕𝜌
, (64b)

𝛿H

𝛿s
= 𝜕u

𝜕s
= T, (64c)

𝛿H

𝛿w
= 𝜕u

𝜕w
≡ j =

(
𝜎41+ 𝜎5 c+ 𝜎6c

2
)
⋅w, (64d)

𝛿H

𝛿c
= 𝜕u

𝜕c
≡ 𝛕 = 1

2
𝜎11+

1

2
𝜎2c+

1

2
𝜎3c ⋅ c+

1

2
𝜎5ww+ 1

2
𝜎6(ww ⋅ c+ c ⋅ww). (64e)

In writing down, in particular, the last term in Eq. (64e), we have used that the tensor c is symmetric. We

also note that in the above derivatives, 𝜌,M and s are densities of extensive variables butw and c are by nature

intensive variables.

By writing the dynamical equations for any functional F[𝜌,M, s,w, c] = ∫ f (𝜌,M, s,w, c)dV in the form
dF

dt
= ∫

[
𝛿F

𝛿𝜌

𝜕𝜌

𝜕t
+ 𝛿F

𝛿Mi

𝜕Mi

𝜕t
+ 𝛿F

𝛿s

𝜕s

𝜕t
+ 𝛿F

𝛿𝑤i

𝜕𝑤i

𝜕t
+ 𝛿F

𝛿ci j

𝜕ci j

𝜕t

]
dV , comparing terms one-by-one with the general evolution

equation, Eq. (1), for the Poisson bracket defined by Eq. (59), introducing the thermodynamic pressure through

p = 𝜌
𝜕u

𝜕𝜌

||||s,w,c + s
𝜕u

𝜕s

||||𝜌,w,c − u (65)

which helps simplify the momentum equation, and defining the stress tensor P through

P = p1+ jw+ 2𝛕 ⋅ (c− 1), (66a)

(where we have used again that c is symmetric) with 1 being the unit tensor of rank 2, the following equations

of motion are obtained:
𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (67a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (67b)
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𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
, (67c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r
T, (67d)

𝜕c

𝜕t
+ v ⋅∇c+ c ⋅ 𝛋+ 𝛋T ⋅ c = 𝛋+ 𝛋T . (67e)

By further substituting Eqs. (64d) and (64e) for j and 𝛕, respectively, into Eq. (66), the following final expres-
sion for the stress tensor is obtained:

P = p1+
(
𝜎11+ 𝜎2c+ 𝜎3c

2
)
⋅ (c− 1)+

(
𝜎4 − 𝜎5

)
ww+

(
𝜎5 − 𝜎6

)
(ww ⋅ c+ c ⋅ww)

+ 𝜎6
(
ww ⋅ c2 + c ⋅ww ⋅ c+ c

2 ⋅ww
)
. (68)

3.1.3 Dissipative bracket and the full form of the transport equations

For the dissipative bracket, we can use the following rather general form:

[F,G] = −
∫

A1𝑤i
𝛿F

𝛿𝑤i

𝛿G

𝛿s
dV +

∫

1

T

𝛿F

𝛿s
A1𝑤i

𝛿G

𝛿𝑤i

𝛿G

𝛿s
dV

−
∫

Ri j
𝛿F

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV +
∫

1

T

𝛿F

𝛿s
Ri j

𝛿G

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV

−
∫

A2
(
ci j − 𝛿i j

) 𝛿F
𝛿ci j

𝛿G

𝛿s
dV +

∫

1

T

𝛿F

𝛿s
A2
(
ci j − 𝛿i j

) 𝛿G
𝛿ci j

𝛿G

𝛿s
dV

−
∫

Qijkl
𝛿F

𝛿ci j

𝛿G

𝛿ckl
dV +

∫

1

T

𝛿F

𝛿s
Qijkl

𝛿G

𝛿ci j

𝛿G

𝛿ckl
dV , (69)

but to keep the equations relatively simple, we will choose Q = 0 in the following. Moreover, we can break

the tensor c into its traceless ĉ and isotropic c parts, namely, c = c+ ĉ, with c = 1

3
tr(c)1 and ĉ = c− 1

3
tr(c)1, and

assume different relaxation rates for the two components in order to distinguish between shear and dilatational

effects. Thus, we assume that

[F,G] = −
∫

A1𝑤i
𝛿F

𝛿𝑤i

𝛿G

𝛿s
dV +

∫

1

T

𝛿F

𝛿s
A1𝑤i

𝛿G

𝛿𝑤i

𝛿G

𝛿s
dV

−
∫

Ri j
𝛿F

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV +
∫

1

T

𝛿F

𝛿s
Ri j

𝛿G

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV

−
∫

(
A21

(
ci j − 𝛿i j

)
+ A22

(
ĉi j − 𝛿i j

)) 𝛿F
𝛿ci j

𝛿G

𝛿s
dV

+
∫

1

T

𝛿F

𝛿s

(
A21

(
ci j − 𝛿i j

)
+ A22

(
ĉi j − 𝛿i j

)) 𝛿G
𝛿ci j

𝛿G

𝛿s
dV. (70)

By computing the extra contributions and adding them to Eq. (67), the following full set of dynamic

equations is derived:
𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (71a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (71b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ A1w ⋅ j+ 1

T
R: jj+

(
A21c+ A22ĉ

)
: 𝛕, (71c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r
T − A1 ⋅ T ⋅w− R ⋅ j, (71d)

𝜕c

𝜕t
+ v ⋅∇c+ c ⋅ 𝛋+ 𝛋T ⋅ c = 𝛋+ 𝛋T − T ⋅

(
A21c+ A22ĉ

)
. (71e)
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To make the comparison with the equations reported by Öttinger in Ref. [22] (obtained in the nonrelativis-

tic limit of the corresponding relativistic ones), we have to choose the three phenomenological coefficients as

follows:

A1 =
1

T
⋅
1

𝜏1
, A21 =

1

T
⋅
1

𝜏0
, A22 =

1

T
⋅
1

𝜏2
, (72)

with 𝜏0, 𝜏1, 𝜏2 denoting the relaxation times driving changes inw, c and ĉ, respectively. Then, we see that Eq. (71)

contain the extra term−R ⋅ j in the dynamic equation forw and the corresponding term+ 1

T
R: jj in the entropy

equation. The set of Eq. (71) without the terms involving theR tensor has been employed by Öttinger [22] to study

the hydrodynamics of a fluid whose internal energy density u, see Eq. (62), is described by an equation of the

form u = u0 + 1

2
𝛼(1)I4 + 1

2
𝛼(2)I2, implying that𝜎2 = 2𝛼(2) and𝜎4 = 2𝛼(1). For such a fluid, the thermal conductivity

is identified as 𝜆 = 𝜎4T𝜏1, the viscosity as 𝜆 = 2𝜎2𝜏2, and the dilatational viscosity as 𝜅 = 4

3
𝜎2𝜏0.

3.2 Relativistic formulation

3.2.1 Definitions of fluid properties and some important thermodynamic considerations

To include viscosity, we take the vector of state variables to be again x = {𝜌,M, s,w, c} but now we will elevate

the covariant vectorw to a four-vector and the mechanical tensor c to a four-by-four tensor. The time-like com-

ponent of wwill be exactly the same as before. For the mechanical tensor c𝜇𝜈 , on the other hand, which will be

closely related to the velocity gradient tensor, we will assume the following form:

(
c𝜇𝜈

)
=

⎛⎜⎜⎜⎝
v

c
⋅ (c− 1) ⋅

v

c
(1− c) ⋅

v

c

(1− c) ⋅
v

c
c

⎞⎟⎟⎟⎠
. (73)

This has been constructed such that its time-like components c0 j and cj0 obey dynamic evolution equations

whose structure is very similar to that of the space components cij. Moreover, the c00 element was selected such

that c𝜇𝜈 satisfies the following property:

c𝜇𝜈u
𝜈 = u𝜇 . (74)

Of key importance for the subsequent analysis is the definition of the energy-momentum tensor. To this, we

assume again expression [21] but with the understanding now that P𝜇𝜈 must be defined differently in order to

account for the presence of the new variable c𝜇𝜈 . We also assume that the thermodynamic state of the fluid in the

local rest frame is described by a general relationship for its internal energy uf as a function of the independent

variables of the form:

u f = u f

(
𝜌 f , s f , I1, I2, I3, I4, I5, I6

)
, (75)

where the six invariant quantities I1, I2, I3, I4, I5, I6 are defined exactly as in the nonrelativistic case:

I1 = tr
(
c f

)
, I2 = tr

(
c
2
f

)
, I3 = tr

(
c
3
f

)
, I4 = w

2
f
, I5 = w f ⋅ c f ⋅w f ,

I6 = w f ⋅ c
2
f
⋅w f , (76)

with the subscript f used to emphasize that the corresponding fluid properties are evaluated in the rest frame.

How the scalars appearing in Eq. (75) can be evaluated in any reference frame is discussed by Öttinger [22]. We

also define the corresponding conjugate variables in the comoving frame, exactly aswe did in the nonrelativistic

case:

𝜇 f =
𝜕u f

𝜕𝜌 f

, T f =
𝜕u f

𝜕s f
, 𝜎 f ,1 = 2

𝜕u f

𝜕I1
, 𝜎 f ,2 = 4

𝜕u f

𝜕I2
, 𝜎 f ,3 = 6

𝜕u f

𝜕I3
, (77)

𝜎 f ,4 = 4
𝜕u f

𝜕I4
, 𝜎 f ,5 = 2

𝜕u f

𝜕I5
, 𝜎 f ,6 = 2

𝜕u f

𝜕I6
.
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Moreover, we demand the same Euler equation as the one expressed by Eq. (25).

Then, motivated by Eq. (68), we assume the following generalization of the stress tensor:

P𝜇𝜈 = p f 𝜂𝜇𝜈 +
(
c𝜇𝜆 − 𝜂𝜇𝜆

)(
𝜎 f ,1c

0 + 𝜎 f ,2c
1 + 𝜎 f ,3c

2
)𝜆
𝜈
+
(
𝜎 f ,4 − 𝜎 f ,5

)
𝑤𝜇𝑤𝜈

+
(
𝜎 f ,5 − 𝜎 f ,6

)(
𝑤𝜇𝑤

𝜆c𝜆𝜈 + c𝜇𝜆𝑤
𝜆𝑤𝜈

)
+ 𝜎 f ,6

(
𝑤𝜇𝑤

𝜆c2
𝜆𝜈
+ c2

𝜇𝜆
𝑤𝜆𝑤𝜈 + c𝜇𝛼𝑤

𝛼𝑤𝛽c𝛽𝜈

)
. (78)

This, in turn, defines the total energy of the relativistic fluidwhich is given again by Eq. (31), with the energy-

momentum tensor described by Eq. (21). Moreover, the momentum vector components are

Mi =
(
T00 − P00

)𝑣i
c2

+ 1

c
P0i. (79)

The next step is to compute the functional derivatives
𝛿H

𝛿x
that are needed in the construction of the Poisson

and dissipative brackets. These have already been calculated by Öttinger [22] and read

𝛿H

𝛿𝜌
=

c2 + 𝜇 f

𝛾
, (80a)

𝛿H

𝛿M
= v, (80b)

𝛿H

𝛿s
=

T f

𝛾
, (80c)

𝛿H

𝛿w
= j, (80d)

𝛿H

𝛿c
= 1

2
𝛕, (80e)

where the heat flux vector is given now as

ji =
(
𝜎i𝜇 − 𝑣i

c
𝜎0𝜇

)
𝑤𝜇, (81)

where

𝜎𝜇𝜈 =
(
𝜎 f ,1c

0 + 𝜎 f ,2c
1 + 𝜎 f ,3c

2
)𝜇𝜈

. (82)

Also,

𝜏i j = 𝜙i j − 𝜙i0
𝑣 j

c
− 𝑣i

c
𝜙0 j + 𝜙00 𝑣i

c

𝑣 j

c
, (83)

with

𝜙𝜇𝜈 =
(
𝜎 f ,1c

0 + 𝜎 f ,2c
1 + 𝜎 f ,3c

2
)𝜇𝜈 + 𝜎 f ,5𝑤

𝜇𝑤𝜈 + 𝜎 f ,6

(
𝑤𝜇𝑤𝜆c

𝜆𝜈 + c𝜇𝜆𝑤𝜆𝑤
𝜈
)
. (84)

The space components𝜙ij of the four-vector tensor𝜙𝜇𝜈 donot coincidewith the stress tensor components 𝜏 ij

defined in the nonrelativistic case because they have been corrected to account for the fact that in the definition

of Eq. (73) for c𝜇𝜈 , the time-like components c0 j and c0 j are obtained from the product (1− c) ⋅ v

c
. Moreover, if

we define [22]

�̃�i j = 𝜎i j − 𝜎i0
𝑣 j

c
− 𝑣i

c
𝜎0 j + 𝜎00 𝑣i

c

𝑣 j

c
, (85)

then, we recover the following analogue of Eq. (40a):

j = �̃� ⋅
(
w− 𝛾T f

v

c2

)
. (86)

Consequently, the tensor �̃� in the case of a viscous fluid is the generalization of the tensor 𝜎 f

(
1− v v

c2

)
in

the case of an inviscid fluid.

Now, we are in a position to fix the time-like component of the four-vector𝑤𝜇 as well as the fluid entropy

in the comoving frame. To this, we demand the same generalized (relativistic hydrodynamic-thermodynamic)
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Euler expression at the level of the total energy of the relativistic fluid as before, see Eq. (35). In Appendix B we

examine under what conditions such an equation can apply, and we find that Eq. (35) is identically satisfied if

we chose:

s = 𝛾s f +
J0

c

(
≡ S0

)
, (87)

where

J𝜇 = − c

T f

(
P𝜇𝜈u𝜈 + u𝜇u𝛼P

𝛼𝛽u𝛽
)
. (88)

On the other hand, no extra constraints appear for the time-like component of 𝑤𝜇 , thus, we take this to

satisfy the same equation as before, Eq. (36). Equations (87) and (88) were the missing building blocks before

applying the generalized bracket formalism to derive the relativistic hydrodynamic equations. In fact, Eq. (87)

suggests the following expression for the four-vector entropy of the relativistic fluid:

S𝜇 = s f u
𝜇 + J𝜇

c
. (89)

It is also a rather straightforward exercise to show that [22]:

J𝜇 = 𝜎𝜇𝜈𝑤𝜈 + u𝜇u𝛼𝜎
𝛼𝛽𝑤𝛽 . (90)

3.2.2 Poisson bracket and the corresponding reversible part of the transport equations

We are now in a position to write down the transport equations in the comoving frame. By assuming the same

form of the Poisson bracket as in Eq. (59) and by making use of Eq. (42), the reversible part of the dynamic

equations reads
𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (91a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (91b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
, (91c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
, (91d)

𝜕c

𝜕t
+ v ⋅∇c+ c ⋅ 𝛋+ 𝛋T ⋅ c = 𝛋+ 𝛋T , (91e)

where P is the stress tensor defined by an equation very similar to Eq. (68) above, namely,

P = p f 1+
(
𝜎 f ,11+ 𝜎 f ,2c+ 𝜎 f ,3c

2
)
⋅ (c− 1)

+
(
𝜎 f ,4 − 𝜎 f ,5

)
ww+

(
𝜎 f ,5 − 𝜎 f ,6

)
(ww ⋅ c+ c ⋅ww)

+ 𝜎 f ,6

(
ww ⋅ c2 + c

2 ⋅ww+ c ⋅ww ⋅ c
)
, (92)

whose components match the space components of the stress tensor defined by Eq. (78). The explicit Lorentz-

covariant form of the above transport equations is

𝜕𝜇
(
𝜌 f u

𝜇
)
= 0, (93a)

𝜕𝜇
[(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
u𝜇u𝜈 + P𝜇𝜈

]
= 0, (93b)

𝜕𝜇

(
s f u

𝜇 + J𝜇

c

)
= 0, (93c)

u𝜇
(
𝜕𝜈𝑤𝜇 − 𝜕𝜇𝑤𝜈

)
= 0, (93d)

u𝜆
(
𝜕𝜆c𝜇𝜈 − 𝜕𝜇c𝜆𝜈 − 𝜕𝜈c𝜇𝜆

)
= 0. (93e)
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3.2.3 Dissipative bracket and full form of transport equations

To complete the above set of equations, we need to add the dissipative terms. Given that we make use of the

same set of structural variables as in the nonrelativistic case, the dissipative bracket is taken to be the same as

the one defined in Section 3.1.3, see Eq. (70), without the term proportional to A1, and with the understanding

that (due to the Onsager–Casimir reciprocity principle) the tensor R should be again symmetric, see Eq. (11c):

[F,G] = −
∫

Ri j
𝛿F

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV +
∫

1

T

𝛿F

𝛿s
Ri j

𝛿G

𝛿𝑤i

𝛿G

𝛿𝑤 j

dV

−
∫

(
A21

(
ci j − 𝛿i j

)
+ A22

(
ĉi j − 𝛿i j

)) 𝛿F
𝛿ci j

𝛿G

𝛿s
dV

+
∫

1

T

𝛿F

𝛿s

(
A21

(
ci j − 𝛿i j

)
+ A22

(
ĉi j − 𝛿i j

)) 𝛿G
𝛿ci j

𝛿G

𝛿s
dV ⋅ (94)

From this dissipation bracket, the resulting dynamic equations read

𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (95a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (95b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ 1

T
R: jj++

(
A21c+ A22ĉ

)
: 𝛕, (95c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
− R ⋅ j, (95d)

𝜕c

𝜕t
+ v ⋅∇c+ c ⋅ 𝛋+ 𝛋T ⋅ c = 𝛋+ 𝛋T − T ⋅

(
A21c+ A22ĉ

)
. (95e)

The final step is to determine the matrix R so that a covariant set of transport equations arises. One way to

achieve this is to take advantage of the decomposition implied by Eq. (86) for the vector j and take the matrix R

to be the inverse of the �̃�, namely,
R ≡ A0 ⋅ �̃�−1, (96)

where A0 a constant. Then, the entropy production term due to vector w becomes proportional to(
𝑤i − 𝛾T f

𝑣i
c2

)
ji, which is equal to

(
𝑤i − 𝛾T f

𝑣i
c2

)
ji =

(
𝑤i − 𝛾T f

𝑣i
c2

)(
Ji − uiu𝛼𝜎

𝛼𝛽𝑤𝛽 −
𝑣i
c
𝜎0𝜇𝑤𝜇

)
= 𝑤𝜇 J

𝜇, (97)

and thus Lorentz-covariant. Moreover, we can introduce the traceless and isotropic parts of c𝜇𝜈 through

c𝜇𝜈 =
1

3

(
c𝜆
𝜆
− 1

)(
𝜂𝜇𝜈 + u𝜇u𝜈

)
(98a)

and

ĉ𝜇𝜈 = c𝜇𝜈 + u𝜇u𝜈 − c𝜇𝜈, (98b)

respectively. Then, for the spatial components we have

c = 1

3
tr(c)

(
1+ 𝛾2

vv

c2

)
, (99a)

and

ĉ = c+ 𝛾2
vv

c2
− c. (99b)

With these definitions, one can prove that [22]

ci j𝜏i j = c𝜇𝜈𝜙
𝜇𝜈, (100a)
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ĉi j𝜏i j = ĉ𝜇𝜈𝜙
𝜇𝜈, (100b)

as well as that (
ci j + 𝛾2

𝑣i𝑣 j

c2

)
𝜏i j = c𝜇𝜈𝜙

𝜇𝜈 . (100c)

A direct proof of Eq. (100c) is provided in Appendix C. Equations (97), (100a), and (100b) prove that both

entropy production terms on the right-hand side of Eq. (95c) are covariant. Then, the five dynamic equations

become
𝜕𝜌

𝜕t
= − 𝜕

𝜕r
⋅ (v𝜌), (101a)

𝜕M

𝜕t
= − 𝜕

𝜕r
⋅ (vM)− 𝜕

𝜕r
⋅ P, (101b)

𝜕s

𝜕t
= − 𝜕

𝜕r
⋅
(
v s+ j

)
+ 1

T
A0

(
w− 𝛾T2

f

v

c2

)
⋅ j+

(
A21c+ A22ĉ

)
: 𝛕, (101c)

𝜕w

𝜕t
= −v ⋅ 𝜕

𝜕r
w− 𝛋T ⋅w− 𝜕

𝜕r

(
T f

𝛾

)
− A0

(
w− 𝛾T f

v

c2

)
, (101d)

𝜕c

𝜕t
+ v ⋅∇c+ c ⋅ 𝛋+ 𝛋T ⋅ c = 𝛋+ 𝛋T − T ⋅

(
A21c+ A22ĉ

)
, (101e)

or, in Lorentz-covariant form,

𝜕𝜇
(
𝜌 f u

𝜇
)
= 0, (102a)

𝜕𝜇
[(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
u𝜇u𝜈 + P𝜇𝜈

]
= 0, (102b)

𝜕𝜇

(
s f u

𝜇 + J𝜇

c

)
= A0𝑤𝜇 J

𝜇 + A21c𝜇𝜈𝜙
𝜇𝜈 + A22ĉ𝜇𝜈𝜙

𝜇𝜈, (102c)

u𝜇
(
𝜕𝜈𝑤𝜇 − 𝜕𝜈𝑤𝜇

)
= −A2

(
𝜂𝜈𝜆 + u𝜈u𝜆

)
𝑤𝜆, (102d)

u𝜆
(
𝜕𝜆c𝜇𝜈 − 𝜕𝜇c𝜆𝜈 − 𝜕𝜈c𝜇𝜆

)
= −A21T

c
c𝜇𝜈 −

A22T

c
ĉ𝜇𝜈 . (102e)

The set of relativistic equations, Eq. (102), is exactly the same as that derived by Öttinger fromGENERIC [21].

However, we have to keep inmind that these were obtained by choosing the phenomenological frictionmatrixR

to satisfy Eq. (96), implying that one could in principle think of other choices ofR that could render the transport

equations for the entropy and the thermal vector covariant, and this is something worth pursuing further. We

also observe that in the limit of infinite speed light
(
𝑣

c
→ 0

)
, the nonrelativistic analogue of Eq. (102) reduces to

that of Öttinger, which is quite pleasing.

4 Discussion

It is remarkable that one can use exactly the same form of the Poisson and dissipative brackets in order to

formulate time-evolution equations in the two cases (relativistic and nonrelativistic). Also remarkable is the

fact that one can use the generalized Euler equation, Eq. (35), to get guidance as to how to define the time-like

component of the thermal vector and the entropy four-vector. On the other hand, the full consistency of the final

relativistic equations between the two formalisms of nonequilibrium thermodynamics reveals once more their

close connection and equivalence, despite some striking differences. This also implies that similar conclusions

can be drawn from the present work as those pointed out by Öttinger from his original work on the structural

compatibility of GENERIC with special relativity [21]. That is, that even in the absence of viscous effects, the

classical theory of Eckart [23], the second-order theory of Israel [24], and the equations of extended irreversible

thermodynamics [25] and of kinetic theory [26] do not possess the full nonequilibrium structure of the equations

derived from the generalized bracket and the GENERIC formalisms, although both Israel’s theory and extended

irreversible thermodynamics are very similar in structure while kinetic theory can provide the linearized form

of the equations.
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5 Conclusions

Using as an example the case of an imperfect viscous fluid with heat flow, we have shown that the general-

ized bracket formalism of nonequilibrium thermodynamics is fully compatible with special relativity. Indeed,

by appropriately choosing the stress tensor and the entropy-current four-vector we have been able to formu-

late a set of Lorentz-covariant equations for the three hydrodynamic fields (density, momentum and entropy)

and the two generalized force variables (the thermal vector and the mechanical tensor) that are consistent with

the fundamental evolution equation of the formalism. In our work, the Hamiltonian (i.e., the single genera-

tor of the formalism) has been represented by the time-component of the energy-momentum tensor while the

internal energy density has allowed us to define several auxiliary variables playing the role of relativistic field

properties.

In themore general context of the formalism, it appears that to define Lorentz-covariant equations, one can

start with the same Poisson bracket and the same dissipation bracket as for the corresponding nonrelativistic

system. However, for the final transport equations to satisfy Lorentz covariance, the dissipation rates in the

dissipation matrix must be restricted to specific forms. In fact, in the relativistic case the matrix describing

resistance to heat flow is inherently anisotropic as it must depend explicitly on the velocity field in order for

the final equations to be Lorentz-covariant. It also appears that the form of the four-vector entropy current

can be correctly guessed by invoking a generalized hydrodynamic-thermodynamic Euler equation, which can

tremendously help identify suitable forms of the relevant rates.

In the future, we plan to carry out a systematic stability analysis of the final time-evolution equations to

define the range of physically meaningful model parameters for which stable solutions are computed not only

around the zero-velocity field but also when boosts are considered.
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Appendix A

To find under what conditions Eq. (35) holds, we start from its left-hand side (LHS) which with the help of

Eqs. ((33a)–(33c)) becomes

LHS = 𝜌
c2 + 𝜇 f

𝛾
+M ⋅ v+ s

T f

𝛾

= 𝜌 f c
2 + 𝜌 f𝜇 f +

((
T00 + p f − 𝜎 f𝑤

2
0

) v
c2

− 𝜎 f𝑤0
w

c

)
⋅ v+ s

T f

𝛾

= 𝜌 f c
2 + 𝜌 f𝜇 f +

(
T00 + p f − 𝜎 f𝑤

2
0

)𝑣2
c2

− 𝜎 f𝑤0
w ⋅ v
c

+ s
T f

𝛾
. (A.1)

But from Eqs. (22) and (26) we find that

T00 =
(
𝜌 f c

2 + u f + p f + 𝜎 f

(
u𝛼𝑤

𝛼
)2)

𝛾2 − p f + 𝜎 f𝑤
2
0
, (A.2)
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or, using Eq. (25),

T00 =
(
𝜌 f c

2 + T f s f + 𝜇 f𝜌 f + 𝜎 f

(
u𝛼𝑤

𝛼
)2)

𝛾2 − p f + 𝜎 f𝑤
2
0
. (A.3)

Thus,

𝜌 f c
2 + 𝜌 f𝜇 f =

T00 + p f − 𝜎 f𝑤
2
0

𝛾2
− s f T f − 𝜎 f

(
u𝛼𝑤

𝛼
)2
. (A.4)

Substituting this back into Eq. (A.1) yields

LHS =
T00 + p f − 𝜎 f𝑤

2
0

𝛾2
− s f T f − 𝜎 f

(
u𝛼𝑤

𝛼
)2 + (

T00 + p f − 𝜎 f𝑤
2
0

)𝑣2
c2

− 𝜎 f𝑤0
w ⋅ v
c

+ s
T f

𝛾

= T00 + p f − 𝜎 f𝑤
2
0
− s f T f − 𝜎 f

(
u𝛼𝑤

𝛼
)2 − 𝜎 f𝑤0

w ⋅ v
c

+ s
T f

𝛾
. (A.5)

Interestingly, if we choose 𝑤0 so that Eq. (36) is satisfied and s according to Eq. (37), the last five terms on

the right-hand side (RHS) of Eq. (A.5) cancel out identically, nicely leading to the RHS of Eq. (35).

Appendix B

To find under what conditions Eq. (35) holds for an imperfect viscous fluid with heat conduction, we start from

its left-hand side which with the help of Eqs. ((80a)–(80c)) and (79) becomes:

LHS = 𝜌
c2 + 𝜇 f

𝛾
+M ⋅ v+ s

T f

𝛾

= 𝜌 f c
2 + 𝜌 f𝜇 f +

((
T00 − P00

)𝑣i
c2

+ 1

c
P0i

)
𝑣i + s

T f

𝛾

= 𝜌 f c
2 + 𝜌 f𝜇 f +

(
T00 − P00

)𝑣2
c2

+ 1

c
P0i𝑣i + s

T f

𝛾
. (B.1)

But from Eq. (21), we find that:

T00 =
(
𝜌 f c

2 + u f − u𝛼P
𝛼𝛽u𝛽

)
𝛾2 + P00, (B.2)

or, using Eq. (25),

T00 =
(
𝜌 f c

2 + T f s f − p f + 𝜌 f𝜇 f − u𝛼P
𝛼𝛽u𝛽

)
𝛾2 + P00. (B.3)

Thus,

𝜌 f c
2 + 𝜌 f𝜇 f =

T00 − P00

𝛾2
− s f T f + p f + u𝛼P

𝛼𝛽u𝛽 . (B.4)

Substituting this back into Eq. (B.1) yields

LHS = T00 − P00

𝛾2
− s f T f + p f + u𝛼P

𝛼𝛽u𝛽 +
(
T00 − P00

)𝑣2
c2

+ 1

c
P0i𝑣i + s

T f

𝛾

= T00 − P00 − s f T f + p f + u𝛼P
𝛼𝛽u𝛽 +

1

c
P0i𝑣i + s

T f

𝛾

= T00 + p f −
(
P00 − u𝛼P

𝛼𝛽u𝛽 −
1

c
P0i𝑣i

)
+
(
s
T f

𝛾
− s f T f

)
. (B.5)

If we define

J0 = − c

T f

(
P0𝜈u𝜈 + u0u𝛼P

𝛼𝛽u𝛽
)
,
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then,

J0 = − c

T f

(
−𝛾P00 + 𝛾

𝑣i
c
P0i + 𝛾u𝛼P

𝛼𝛽u𝛽

)
= 𝛾

c

T f

(
P00 − 𝑣i

c
P0i − u𝛼P

𝛼𝛽u𝛽

)
.

Thus, Eq. (B.5) becomes:

LHS = T00 + p f −
1

𝛾

T f

c
J0 + s

T f

𝛾
− s f T f

= T00 + p f +
T f

𝛾

(
s− 𝛾s f −

J0

c

)
,

implying that Eq. (35) holds provided that we choose the entropy as s ≡ 𝛾s f + J0

c

(
= S0

)
, i.e., according to Eq. (87)

in the main text.

Appendix C

With the help of Eq. (83), we have:

(
c𝜇𝜈 + u𝜇u𝜈

)
𝜙𝜇𝜈 =

(
ci j + uiu j

)
𝜙i j +

(
ci0 + uiu0

)
𝜙i0 +

(
c0 j + u0uj

)
𝜙0 j +

(
c00 + u0u0

)
𝜙00

=
(
ci j + 𝛾2

𝑣i𝑣 j

c2

)(
𝜏 i j + 𝜙i0

𝑣 j

c
+ 𝜙0 j 𝑣i

c
− 𝜙00 𝑣i

c

𝑣 j

c

)
+
(
ci0 − 𝛾2

𝑣i
c

)
𝜙i0 +

(
c0 j − 𝛾2

𝑣 j

c

)
𝜙0 j +

(
c00 + 𝛾2

)
𝜙00, (C.1)

thus, to prove Eq. (100c), we must show that

(
ci j + 𝛾2

𝑣i𝑣 j

c2

)(
𝜙i0

𝑣 j

c
+ 𝜙0 j 𝑣i

c
− 𝜙00 𝑣i

c

𝑣 j

c

)
+
(
ci0 − 𝛾2

𝑣i
c

)
𝜙i0 +

(
c0 j − 𝛾2

𝑣 j

c

)
𝜙0 j +

(
c00 + 𝛾2

)
𝜙00 = 0. (C.2)

If we carry out the calculations and collect terms, the LHS of Eq. (C.2), we find:

LHS = 𝜙i0
(
ci j
𝑣 j

c
+ 𝛾2

𝑣i
c

𝑣 j𝑣 j

c2
+ ci0 − 𝛾2
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(
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c
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)
, (C.3)

or, equivalently,

LHS = 𝜙i0

(
ci j
𝑣 j

c
+ 𝛾2

𝑣i
c

𝑣2

c2
+ ci0 − 𝛾2

𝑣i
c

)
+ 𝜙0 j

(
ci j
𝑣i
c
+ 𝛾2

𝑣 j

c

𝑣2

c2
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𝑣 j

c

)

+ 𝜙00

(
−ci j

𝑣i𝑣 j

c2
− 𝛾2

𝑣2
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c2
+ c00 + 𝛾2

)
. (C.4)

But, by definition of the tensor c𝜇𝜈 ,

ci j
𝑣 j

c
+ ci0 =

𝑣i
c

ci j
𝑣i
c
+ c0 j =

𝑣 j

c

c00 =
𝑣ici j𝑣 j

c2
− 𝑣2

c2
− 1.

(C.5)
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Thus, Eq. (C.4) becomes

LHS = 𝜙i0 𝑣i
c

(
1+ 𝛾2

𝑣2

c2
− 𝛾2

)
+ 𝜙0 j

𝑣 j

c

(
1+ 𝛾2

𝑣2

c2
− 𝛾2

)

+ 𝜙00

(
−𝛾2 𝑣

2

c2
𝑣2

c2
− 𝑣2

c2
− 1+ 𝛾2

)
. (C.6)

And if we finally substitute Eq. (18) in the main text for 𝛾 in each of the three parentheses on the RHS of

Eq. (C.6), we find that all of them are zero. Thus, LHS = 0, which is what we wanted to prove.
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