Stretch and flow: Research published in PNAS sheds light on unusual properties of well-known materials

Experiments confirm numerical predictions for the normal stresses and extensional properties of elastoviscoplastic materials - a fruitful collaboration of *The Fluids Lab, University of Patras* and the *Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology, Japan*
Transition between solid and liquid state of yield-stress fluids under purely extensional deformations

Stavros Vlahavas, Simon J. Hayward, Cameron C. Hopkins, Alexandros Syrakos, Amy Q. Shieh, Yannis Dimakopoulos, and John Tsaparas

PNAS June 8, 2023 117 (23) 12611-12617, first published May 20, 2023 https://doi.org/10.1073/pnas.2302242117
Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved April 18, 2023 (received for review December 10, 2022)

Significance

The stress-induced transition from solid to liquid state is commonly referred to as “yielding.” Yield-stress materials, including pastes, muds, blood, crude oil, and condoms-like mayonnaise, have solid-like properties at rest but can be made to yield and flow under sufficient applied stress. Despite their ubiquity and importance, the existing 100-y-old theory describing the behavior of such materials is only well verified under basic conditions of applied shear stress and assumes that the solid state is un deformable. Experiments and simulations conducted under pure extension provide fundamental information on the behavior of yield-stress materials and demand an overhaul of the current standard theory in order to account for material deformation in the solid-like state prior to yielding and flow.
Picked up by 2 news outlets

Science News

Stretch and flow: Research sheds light on unusual properties of well-known materials

Date: May 16, 2020
Source: Okinawa Institute of Science and Technology (OIST) Graduate University
Summary: Researchers have taken a close look at the flow of materials that have both liquid-like and solid-like qualities, such as toothpaste, mayonnaise, and ketchup, using both simulations and experiments.

RELATED TOPICS
- Matter & Energy
 - Nature of Water
 - Materials Science
- Civil Engineering
- Engineering and Construction
- Nanotechnology
- Inorganic Chemistry
- Chemistry
- Weapons Technology

FULL STORY

Toothpaste, face creams, hair gel, mayonnaise, and ketchup are household items that most people don’t think twice about but, in terms of their flow behavior, they have unusual properties. They’re all elastomeric-plastic (EVP) materials, which behave like solids when at rest but can yield to flow like liquids when placed under enough stress. Despite how common these materials are, our ability to model and predict their behavior relies on a theory that only has been shown to work under certain conditions.

At the center, the velocity of the material is zero...

In the outbound channels, an extensional flow is generated.
The contributors

Stylianos Varchanis
John Tsamopoulos*
Yannis Dimakopoulos
Alexandros Syrakos
Amy Shen
Simon Haward
Cameron Hopkins

Micro/Bio/ Nanofluidics Unit, Okinawa Institute of Science and Technology, Japan

Yannis Dimakopoulos
Alexandros Syrakos

Laboratory of Fluid Mechanics and Rheology, University of Patras, Greece
“Toothpaste, face creams, hair gel, mayonnaise, and ketchup are household items that most people don't think twice about but, in terms of their flow behavior, they have unusual properties. They're all elasto-visco-plastic (EVP) materials, which behave like solids when at rest but can yield to flow like liquids when placed under enough stress. Despite how common these materials are, our ability to model and predict their behavior relies on a theory that has only been shown to work under certain conditions."
Scientists from the Laboratory of Fluid Mechanics and Rheology (The FluidsLab) at the University of Patras and the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) and have revealed insights about these materials by combining experiments with simulations. Their research, published in PNAS, suggests that the materials’ elasticity in its solid-like state is a key property that should be included in future models.

“Over the last decade, advances in microfluidics experiments have revealed many unexpected phenomena in the flow of EVP materials,” said Professor John Tsamopoulos, from the University of Patras. “Examples include the cusped shapes of bubbles in the gels and the loss of symmetry in the flow. These, and other observations, hinted that something was missing from the existing theory. Previous research in our lab suggested that elasticity, the ability of the material’s microstructure to deform before yielding, was the missing part of the puzzle.”

Professor Amy Shen, who leads the OIST Unit, emphasized the importance of this research. “Even when basic household items are set aside, having a fundamental understanding of how EVP materials flow is very useful, especially in biomedical science and geophysics.” For example, she explained, blood is an EVP material — it behaves like a solid at rest but flows like a liquid in arteries. What’s more, she added, some 3D-printed tissues and scaffolds can have EVP properties, and, on the geophysics side, volcanic lava behaves like an EVP material albeit on a much larger scale.
Previous experimental research on EVP materials has measured their behavior under shear flow, obtained when layers of fluid slide past each other. But, when it comes to the industrial processing and uses of these materials, such as fiber-spinning and circuit-board printing, it’s often the extensional flow -- when the fluid is stretched -- that’s more important.

The study of purely extensional flows is a great challenge in experimental fluid dynamics, and the extensional flow of EVP materials has never previously been successfully measured in experiments. To achieve this for the first time, Dr. Simon Haward, the group leader from the Micro/Bio/Nanofluidics Unit, used a novel microfluidic apparatus known as a cross-slot geometry. The apparatus comprised four channels that were all at right angles to each other.

"Inside the cross-slot geometry, we used a Pluronic solution, a well-known EVP material," said Dr. Haward. "When we put pressure on the two inbound channels, which were located opposite to each other, the solution was pushed towards the center point and it came out of the other two channels. The resulting flow has a point at the center where the velocity goes to zero. In the two outbound channels, we generated an extensional flow where the fluid was stretched."
Meanwhile, Professor Yannis Dimakopoulos and researchers at the University of Patras created a theoretical model and simulated the flow of two EVP materials -- the Pluronic solution and another material called Carbopol. They showed that complex patterns arose in the flow, which included the presence of solidified regions surrounded by the liquid-state. Their findings matched the experiments performed at OIST.

"This model can describe simple EVP materials in shear, extensional and mixed flows. Although we only focused on two materials, it could be used on a wide variety with varying levels of elasticity, plasticity, viscosity, and other properties," said Stelios Varchanis, a Ph.D. candidate at the University of Patras and first author of the paper. "This makes the model appropriate for simulating flows during the design and optimization of various industrial processes."

This research suggests that the existing theory needs to be overhauled to include the elasticity of the material. "Depending on the amount of deformation that the EVP material can sustain before yielding, it will either behave in a way close to what is predicted by the existing theory or will behave more like a flowing elastic-solid," said Stelios.

"The experiments at OIST complimented the simulations," said Dr. Cameron Hopkins, from the OIST Micro/Bio/Nanofluidics Unit. "Even though the Pluronic solution that we studied only exhibits weak elastic effects, a small amount of asymmetry was observed in the flow indicating a deviation from purely fluid-like behavior, so the elasticity cannot be neglected. Our experiments provided strong support for the proposed modification of the theory."

This research also involved Dr. Alexandros Syrakos from the University of Patras.
The results of the simulations matched the results of the experiments in OSCER microdevice. Credit: University of Patras
Links

Research Article in PNAS

Research News in PHYS.org